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Abstract 

In this paper, we review a few aspect of complex living systems, the guidelines 
towards the study of crowd’s dynamics and of pedestrians systems. This class of 
models belongs to complex systems in applied sciences, who interact in a non-
linear manner and have a self-organizing ability. This follows the recipe of 
Boltzmann’s kinetic gas theory, leading to the basic equations of gas dynamics 
in the limit. 

1. Introduction and Motivation 

The paper is concerned with the mathematical modelling of complex 
living systems. Let us consider a large system of interacting particles 
that belong to physical systems, whose dynamics is determined by their 
ability to dialogue among themselves and develop specific strategies. 
Typical examples are pedestrians in crowds, vehicles-driver on roads, or 
animals in swarms. If the strategy changes according with the number of 



C. DOGBE 72

interacting particles, all these systems can be classified as complex 
systems according to the observation that the dynamics of a few entities 
does not generate straightforwardly the dynamics of the whole system. 
Consequently, emerging collective behaviours do not appear to be 
straightforwardly related to the individual dynamics. Roughly speaking, 
complexity refers to the study of systems composed of many interacting 
components, or agents, that act together in a non-linear fashion and 
produce patterns of behaviour at the level of the group. In this review, we 
show how the mathematical approach can be applied in complex living 
systems. 

We take the example of modelling of the crowd and we derive three 
categories of models. A crowd is a complex system and the collective 
behaviours of pedestrians in the crowd are often viewed as the emergent 
properties of the system. The first model we presented is formulated as a 
system of ODEs that describe the crowd behaviour such that it takes 
individual parameters like desired, velocity, actual velocity, and position. 
The second model is macroscopic (fluid) model, which is good enough to 
reproduce and evaluate generic crowd behaviour under different 
environmental conditions and the third model is a kinetic, Vlasov-type 
and Boltzmann-like equation based on interactions between the 
pedestrians. The concepts and techniques of statistical physics are being 
used nowadays to study several aspects of complex systems. 

The questions which are of practical interest that we address can be 
summarized as follows: 

● What are appropriate mathematical equations that govern complex 
living systems? 

● In comparison with the flow traffic, can the analysis developed 
within the framework of the vehicular traffic be extended to the 
modelling of the human behaviour? 

● What are the advantages and disadvantages of modelling? 

We will focus on some aspects of theses questions. 
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2. Crowd Motion Modelling: A Brief Overview 

As mentioned in the Introduction, typical examples of complex 
systems are crowd dynamics [29, 2], vehicular traffic [7], biological 
systems [13], consumers in the market [28], and social sciences [1]. 
Modelling crowd dynamics is quite recent and is mainly derived from 
vehicular traffic modelling, which has been widely analyzed in the field of 
applied mathematics and transportation engineering. Nevertheless, there 
is important difference between the dynamics of vehicles and that of the 
crowd. Because of the apparent similarities between these systems, the 
tools of statistical mechanics seem to be the natural choice for studying 
these models. There was a vast literature on modelling of the movement 
of crowds since the work of Hakin and Wright [17]. In this review, we will 
focus on the physics aspects of the modelling of crowd movement. The 
literature on crowd dynamics, using methods from physics is initiated by 
the works of Henderson [21, 22]. The author conjectured that pedestrian 
crowds behave similarly to gases and fluids. In practice, pedestrian crowd 
models, that is based on this conjecture, contain corrections due to 
interactions such as collision avoidance and deceleration maneuvers, 
which do not obey momentum and energy conservations [19]. 

Some papers are available mainly concerning modelling issues at the 
microscopic and macroscopic scale. Among others, Helbing and Molnar 
[19, 18]. Recent papers by Hughes [25, 26] and Coscia and Canavesio [9] 
which deal with macroscopic type modelling, put clearly in evidence that 
the modelling can be developed only if the thinking ability of interacting 
individuals is often carefully taken into account. In framework of scalar 
conservation laws, we can mention the reference [8]. The measure 
theoretical framework is proposed by Piccoli and Tosin [14]. An up-to-
date review and critical analysis of crowd models so far proposed can be 
found in Bellomo and Dogbe [2]. 
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Individuals in crowds can be regarded as complex living systems, who 
interact in a nonlinear manner. Moreover, interactions follow specific 
strategies generated by the ability to communicate with the other 
entities, and to organize the dynamics according both to their own 
strategy and interpretation of that of the others. Therefore, the 
knowledge of the interaction of a few entities is not sufficient to describe 
the collective dynamics of the overall system. A further difficulty is 
generated by the fact that individual dynamics are not generally 
observable, while only the overall behaviour can be observed and 
geometrically interpreted. 

Crowd models can be classified into three categories, as already been 
done for vehicular traffic models, that correspond to different scales of 
the phenomenological observation of the system. Nowadays, one 
distinguishes three different conceptual frameworks for modelling crowd 
motion. The first is “microscopic” representation scale is explicitly 
focused on individual pedestrian each of which is represented by a 
“particle”. The nature of the interactions among these particles is 
determined by the way the pedestrians influence each others' movement. 
The second is continuum (or macroscopic) representation scale which 
views pedestrians as a (continuous) fluid flow and suggests a focus on 
global crowd behaviour. In contrast, in the so-called “gas-kinetic” models, 
the traffic of pedestrians is viewed as a compressible fluid formed by the 
pedestrians. Once the representation scale has been chosen, it is useful to 
express all the variables involved in the problem in a dimensionless form. 
It is also well understood that none of the above representations is fully 
appropriate, considering that the number of interacting entities in 
crowds is not large enough to justify either the continuum mechanics 
approximation. 

In order to provide a broad perspective, we describe each of the three 
modelling approaches including advantages and disadvantages of each. 
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Pedestrians in a crowd move in complex geometries generally in two 
or more space dimensions. From now, let us consider the system in two 

space dimension and let 2R⊂Ω  be the domain occupied by the crowd, 
that can be either bounded or unbounded (see Figure 1). 

 

Figure 1. Overview of the geometry of crowd domain. Plan view of 
crowds moving through an environment containing a goal and an 
obstacle. 

We provide a brief (incomplete) overview of the classification into 
three categories of models for the movement of the crowd. 

2.1. Microscopic models 

Microscopic description refers to entities individually identified    
(e.g., [15]). In this case, their position and velocity identify, as dependent 
variables of time, the state of the whole system. Models developed at the 
microscopic scale are stated in terms of ordinary differential equations. 
Then, similar to the Newtonian mechanics for systems of particles, one 
has to solve a large system of equations. Mean quantities, such as density 
and mass velocity, are then obtained by an averaging process. Bearing all 
above in mind, the overall description of microscopic models is delivered 
by the following system of equations: 
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where ( ) ( ) ( )( )tytxt iiii ,=≡ xx  is the dimensionless position vector in Ω  

and ( ) ( ( ) ( ))tvtvt i
y

i
xii ,=≡ vv  is the dimensionless velocity of each i-th 

velocity for each i-th pedestrian with { }.,,1 Ni …∈  The forces ( )tiF  

involved including acceleration and deceleration due the various 
reactions of the individuals when they perceive their environment (other 
individuals and obstacles). ( )tiF  is the sum of forces acting on the 

individual i at time t. 

Microscopic models include the cellular automaton model (e.g., [5, 6]), 
the lattice gas model (e.g., [16]), magnetic force models (e.g., [30]) and are 
particularly well suited for use with small crowds. One can also add to 
these models, the optimal control approach given by Hoogendoorn and 
Bovy [24] and Lagrangian formalism by rigid disks introduced by Maury 
and Venel [29]. 

The most popular microscopic models of pedestrians is the social force 
model proposed by Helbing and Molnár (see [18] and the references 
therein), which is a self-driven, many-particles model using push-pull 
effects to describe pedestrian behaviour in crowds. However, the idea of 
social force models is modelling the behaviour using only a set of simple 
forces to describe the behaviour of the human pedestrians that comprise 
a crowd. The resulting force for pedestrian ii F,  is the sum of the three 

main forces 
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The first term in the right hand side of (2.2) represents the driving forces, 
i.e., the force to drive pedestrians to a desired direction with a desired 
speed to reach the target. The standard form of the driving force is 
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( ) ( ( ) ( )).1 0drv tettF iiii vv −
τ

=  (2.3) 

In Equation (2.3), 0
iv  is the intended velocity with which pedestrians 

tend to move in the absence of interaction; ie  is the unit vector pointing 

towards the pedestrian’s target; iv  is the actual velocity of the pedestrian 

at time t. τ  is the relaxation time, and scales the force, determining how 
fast a pedestrian changes velocity and returns to its desired velocity after 
having been walking slower because of obstacles etc. 

The second term in the right-hand side of Equation (2.2) represents 
the interaction force from pedestrians j. The third term in the right-hand 
side of Equation (2.2) is the interaction potential between pairs of 
pedestrians, which can takes, for example, the form 

( ) ( ),kk iii rUF ∇−=x   (2.4) 

where U is a monotonic decreasing potential and kir  denotes the shortest 

distance between pedestrian and wall or obstacle; wN  is the number of 

obstacles and walls. The last term in the right-hand side of Equation 
(2.2), ( )tiξ  represents a fluctuation term that stands for random 

behavioural variations arising from accidental or deliberate deviations 
from the optimal strategy of motion. 

A primary advantage of microscopic models is the ability to study 
individual pedestrian motion. The main disadvantage of microscopic 
models, is that one ordinary differential equation is required for each 
pedestrian. In addition, microscopic models become very expensive 
simulations of large systems of equations. 

2.2. Macroscopic models 

The approach at the macroscopic scale has been settled by Hughes 
[25], and subsequently developed by various authors [2, 29, 32], by means 
of classical methods of continuum mechanics based on the use of         
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mass and momentum conservation equations properly closed by 
phenomenological models modelling the relation of the acceleration term, 
or mean velocity, to local flow conditions. Hughes’ model is revisited by 
[27]. Specifically, the mathematical framework is identified by mass and 
momentum conservation equations, namely, the trajectories of the 
individuals are found by solving a coupled partial differential equation 
system consisting of equation of motions for each agent. 

The general mathematical framework is given by the three partial 
differential equations (PDEs), expressing the conservation of mass, 
momentum and energy 

( )
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Here, ( )t,xvv =  is the dimensionless velocity, ( )yx,=x  represents 

coordinates, [ ]vA ,ρ  models the component of the mean acceleration, 

acting on pedestrians. The square brackets indicate that it may be a 
functional of its arguments. 

According to the specific constitutive assumption, different models 
can be derived that involve only some of the three equations in (2.5). 
They can be classified as follows: 

● Scalar or first order models: They are described by mass 
conservation equation only, and by a closure equation [ ]ρ= vv  that links 

the local velocity to the crowd density (e.g., Hughes [25]). 

● Second order models: They are obtained by mass and linear 
momentum conservation equations with the addition of a 
phenomenological relation describing the psycho-mechanic action [ ]vA ,ρ  

on the pedestrians. 

● Higher order models: They use all the equations in (2.5), with a 
suitably defined energy density. 
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The presented classification corresponds to increasing accuracy in the 
description of crowd dynamics, but also to increasing complexity. In 
particular, higher order models introduce more parameters to be 
identified and therefore, they are very difficult to be handed and 
compared with the experimental observation. Therefore, in the following, 
more attention will be paid to the description of first order models. 

The following hypothesis about the nature of crowd motion were 
adopted to obtain Equation (2.5): 

Assumption 1. 

Pedestrians seek to minimize their (accurately) estimated travel time 
but temper their velocity according to local density. Specifically, in each 
point of the domain, individuals move towards a given objective along the 
direction ( )., yxν  

Formally, the acceleration term writes 

[ ] [ ] ,,, νvvA ρ/≡ρ v  

where ν  is the unit vector representing the direction of pedestrian 
towards the target, and v/  is determined according to the type of the 

models. The general form of v/  is 
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According to the specific constitutive assumption, different models 
can be derived that involve only some of the two equations in (2.5). One 
example for this class is the model by Hughes [25], which is motivated by 
considering the crowd as a ‘thinking fluid’. In this class of model, only the 
continuity equation of (2.5) is used, that is, the first equation of (2.5), the 
so-called scalar or first-order models is obtained, and the closure 
relations for the velocity v is a term of the density ρ  and possibly also of 

its gradients ,ρ∇  that is (e.g., [9]) 
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[ ] ( ) [ ] ( ).,, xvx νρ∇ρ/=∇ρ �v  

The most popular macroscopic model of first-order is proposed by Hughes 
[25, 26]. Writing the density of pedestrians or the density of holes, as 
appropriate, as ,ρ  the governing equations for the flow are given as 

( ( ) ( ) ) ,02 =φ∇ρρρ⋅∇−
∂
ρ∂ fgt   (2.6) 

where in (2.6), the pedestrian velocity is given by 

( ) ( ) ,2 φ∇ρρ−= fgv   (2.7) 

with φ  denotes the potential field giving the direction of motion toward a 

common destination, g is discomfort function at high density, f is speed 
diagram. In the second-order model, the acceleration in (2.5) consists of 
two contributions: The first one corresponding to a trend and to 
equilibrium velocity depending on the local density, directed towards ,ν  

and the second term to the action of the density gradients towards .ν  In 
particular, negative values increase the acceleration, while positive 
values decrease it. The reader will have in mind that, one speaks about 
acceleration and not about force because it would not be adapted for a 
system in which can not be defined properly the mass. To be clear: The 
acceleration in here is not the real physical force that has dimension of 
Newton but only the analogy of the force that characterizes the internal 
driving force or motivation of the pedestrian. The same type of model is 
used in [12] to study the behaviour of a flock of sheep. In a companion 
paper [2], we have developed different models of the system of Equations 
(2.5). 

On the modelling approach of macroscopic models include among 
others, the optimal control approach by Maury et al. [32] and the mean-
field games approach by Dogbe [10]. One advantage of macroscopic 
models is that they are relatively simple in terms of calculations, 
compared to microscopic models. These models have fewer parameters 
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than their microscopic. Meanwhile, one of the disadvantages of a 
macroscopic model is the loss of small detail, the dynamics that can be 
modelled with microscopic models. 

2.3. Statistical or gas-kinetic models 

In the kinetic theory, pedestrian traffic is treated as a gas of 
interacting particles where each particle represents a pedestrian. The 
probabilistic description of pedestrian crowds in the kinetic theory is 
developed by appropriately modifying the kinetic theory of gases. Thus, 
statistical models consist of the derivation of an evolution equation for 
the distribution function on the position and velocity of the pedestrians 
along the walkway. This approach was first applied by Henderson in [22], 
who has showed that the movements of people in crowds seem to obey the 
Maxwell-Boltzmann statistics of the kinetic theory of gases. The ideas 
presented were subsequently extended by the authors [19, 23]. The 
kinetic theory description is used when the state of the system is still 
identified by position and velocity of the microscopic entities, however, 
their representation is delivered by a suitable probability distribution 
over the microscopic state. Mathematical models describe the evolution of 
the above distribution function generally by nonlinear integro-
differential equations. The representation is defined by the statistical 
distribution of their position and velocity 

( ) [ ] .,0,,, +→×Ω×= Rvvx DTtff   (2.8) 

Here, 2R⊂vD  is the domain of the velocity variable. If f is locally 

integrable, ( ) vxvx ddtf ,,  denotes the number of individuals, which, at 

the time t, are in the elementary domain of the microscopic states 
.vD×Ω  Then, macroscopic observable quantities can be obtained, under 

suitable integrability assumptions, by moments of the distribution. In 
particular, the dimensionless local density is given by 
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( ) ( ) .,,, vvxx
v

dtft
D∫=ρ  

The total number of individuals in the closed domain ,Ω  occupied by the 

crowd at the time t, is given by 

( ) ( ) ,, xx dttN ρ= ∫Ω  

which depends on time in the presence of inlet and/or outlet of 
pedestrians. The local flux is defined as 

( ) ( ) .,,, vvxvxq
v

dtft
D∫=  

Analogously, the mean velocity can be computed as follows: 

[ ] ( ) ( ) ( ) ,,,,
1, xvxvxxv dtfttE ∫Ωρ

=  

and similarly the speed variance, provides a measure of the stochastic 
behaviour of the system with respect to the deterministic macroscopic 
description. We now formulate the kinetic description of the above motion 
laws. In the presence of external accelerations and neglecting long-range 
interactions, the number (or mass) phase space density of a pedestrian 
undergoing collisional events, satisfies a kinetic equation 

( ) ( ) ( [ ] [ ]) ( )( ) .0,,,,,, =+ρ⋅∇+∇⋅+
∂
∂ vxFvxvvx vx tfftftft f F  (2.9) 

Here ba ⋅  denotes the scalar product of two vectors a and b in 2R  and 

v∇  stands for the divergence operator with respect to the velocity 

variable .2R∈v  Furthermore, ( )vx,,tff =  is given by summing all 

actions applied by pedestrians; [ ]fρF  is the macroscopic acceleration and 

F  denotes the microscopic acceleration. This equation bears deep 
similarity to the Boltzmann equation of statistical physics. Naturally, 
pedestrian cannot observe f itself, but some lower order moments of f, 
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like the mean velocity, the mean acceleration … etc. The modelling 
problem consists then in the mathematical description of the two 
accelerations, respectively, depending on various conceivable physical 
situations. One can add to the Equation (2.9) a nonlocal operator [ ]fJ  of 

local interactions (typically an integral operator) depending on the local 
distribution function. Thus, Equation (2.9) can be rewritten as 

( ) ( ) (( [ ] [ ]) ( ))vxFvxvvx vx ,,,,,, tfftftft f F+ρ⋅∇+∇⋅+
∂
∂  

[ ] ( ).,,;, vxtfJ νρ=  (2.10) 

The operators x∇  and v∇  are the gradient and the divergence of vector 

fields or tensor. The left-hand side is a transport operator. It expresses 
the material derivative of f in the phase space spanned by ( ),, vx  due to 

the motion of the particles with velocity v and the “force terms” 
[ ] .F+ρ fF  The modelling problem consists then in the mathematical 

description of the term [ ]ν;, ρfJ  depending on various conceivable 

physical situations. Of course, Equation (2.10) is incomplete until we 
specify the term [ ].;, νρfJ  In general, one way to model the term J 

consists in describing a trend to equilibrium analogous to the BGK 
Boltzmann model in kinetic theory (see [19, 11]): 

[ ] ( ) ( ) ( ( ) ( )),,,,,,,, vxvvvx tfftfJ e −ρρω=ρ ν   (2.11) 

where the rate of convergence ( )ρω  depends on the local density ,ρ  and 

ef  denotes the equilibrium distribution function that may be 

parameterized by the local density ρ  and by the direction ν  towards the 

target. We recall that the BGK equation is a model kinetic collisional 
equation, which can be considered in any dimension 1d  and which 

takes into account only the global effect of interactions between fluid 
particles: such an effect is expected to be a relaxation towards local 
thermodynamic equilibrium. 



C. DOGBE 84

In Equation (2.10), when the interaction term J is vanished, 
( )vx,,tff ≡  can be rigorously proved to satisfy the following time-

continuous stochastic model for the pedestrian positions x and velocity 
directions v (see, e.g., [4]): 

(( [ ] [ ]) ) .ffffft f vvx Fv ∆σ=+ρ⋅∇+∇⋅+
∂
∂ F   (2.12) 

Here, v∆  stands for the Laplace operator with respect to the velocity 

variable .2R∈v  The right-hand side is a velocity diffusion term which 
comes from the velocity noise. This is an example of the dynamics of 
crowds in panic or evacuation situations. 

In fact, the description of the system by methods of mathematical 
kinetic theory means to define first of all the microscopic state of entities 
interacting in a large system formed by these entities, and the 
distribution function on this state. The microscopic state always includes 
geometrical variables suitable to identify their position and form, as well 
as their mechanical quantities according to their speed. However, in the 
case of living systems, the identification of the microscopic state requests 
an additional variable, called “activity”, which is characteristic of a 
modelled particular system. For example, this variable may be related to 
the social state in the case of dynamics of populations. Thus, the study of 
these models can be pursued by suitable development of the so-called 
mathematical kinetic theory for active particles, which has shown to be a 
useful reference applications in other fields of life sciences. Traditionally, 
methods of mathematical kinetic theory have been applied to model the 
evolution of large systems of interacting classical or quantum particles. 
Recently, the collective behaviour of a large population of interacting 
individuals has been recently studied by using methods of mathematical 
kinetic theory. 
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The mathematical problem to face is the derivation of an evolution 
equation for the one particle distribution function over the microscopic 
state of the active particles. The literature of kinetic theory can be found 
in the review paper Perthame [31], while mathematical structures 
concerning the kinetic theory of active particles are proposed in the book 
[33]. The reasonings proposed in the preceding sections can be almost 
straightforwardly extended to crowd dynamics. However, additional 
difficulties have been carefully considered, although the mathematical 
structures to be used for the modelling are technically the same with the 
simple modification of the addition of further space variables. 

Roughly speaking, if one introduces an activity variable, denoted 
,R∈u  in the microscopic state of pedestrians to express their strategy, 

and now denotes, for all 0t  by ( ) duddutf vxvx ,,,  the number of 

active pedestrians whose state, at time t, is in the elementary volume 
[ ] [ ] [ ],,,, duuudd +×+×+ vvvxxx  then the equation of motion of 

crowd takes the form 

( ) ( ) ( [ ] ( )) [ ],,,,,,,,,, fJutffutfutt
f =⋅∇+∇⋅+
∂
∂ vxvxvvx vx F  

 (2.13) 

where ( [ ] )ffF⋅∇v  is the acceleration term that represents the 

interaction between individuals when they are distant. Recently, to take 
into account, the strong granular nature of the flow of pedestrians some 
models have been proposed in the literature, based on the discrete kinetic 
theory [3]. 

The major advantage of this approach is due to the large variety of 
kinetic models, which one can obtain in the capture of the non-
equilibrium physical phenomena for the microscale gas flow simulation. 
This approach allows to connect all macroscopic flow variables on a single 
particle distribution. Furthermore, this approach can be considered as 
being closer to the real physical phenomena. 
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The main disadvantage of gas-kinetic models of pedestrians is that, 
looking for a numerical solution is very difficult to obtain. In addition, a 
realistic gas-kinetic or fluid-dynamic theory for pedestrians must contain 
corrections due to their particular interactions (that is, avoidance and 
deceleration maneuvers) since momentum and energy are not conserved 
in pedestrian motion [19]. 

3. Conclusion 

In this survey, where many interesting aspects had to be left out, we 
have presented a general framework to model living complex systems, 
through the example of the dynamics of the crowd, in the spirit of fluid 
theory. The analysis is developed in view of specific applications. The 
mathematical frameworks claim to be more general than those available 
in the literature; that, at least in principle, should allow one to include in 
the modelling process of certain physical systems additional descriptive 
ability with respect to the existing models. We believe that the 
presentation is very brief. The reader interested in this aspect of 
modelling crowd motion could refer to paper [2, 3]. 

Let us remark that a variety of interesting and challenging 
mathematical problems are related to the qualitative and computational 
analysis of problems generated by living systems. The are several issues 
that are left for future work. We hope that this brief overview has 
convinced the reader that the investigation of the motion of crowd is a 
fascinating field, both for its practical relevance and the insights into the 
physics of systems far from equilibrium. 
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